Thermal Release Transfer Printing for Stretchable Conformal Bioelectronics
نویسندگان
چکیده
منابع مشابه
Thermal Release Transfer Printing for Stretchable Conformal Bioelectronics
Soft neural electrode arrays that are mechanically matched between neural tissues and electrodes offer valuable opportunities for the development of disease diagnose and brain computer interface systems. Here, a thermal release transfer printing method for fabrication of stretchable bioelectronics, such as soft neural electrode arrays, is presented. Due to the large, switchable and irreversible...
متن کاملStretchable bioelectronics for medical devices and systems
Advances in the microelectronics and telecommunications industries have driven important breakthroughs in medical technologies and health diagnostics over the past decade. However, there are fundamental gaps in size, sensing modalities and mechanical properties between the standard rigid electronics, employed in medical devices today, and the signals emitted by soft biological structures. Here,...
متن کاملTape Transfer Printing of a Liquid Metal Alloy for Stretchable RF Electronics
In order to make conductors with large cross sections for low impedance radio frequency (RF) electronics, while still retaining high stretchability, liquid-alloy-based microfluidic stretchable electronics offers stretchable electronic systems the unique opportunity to combine various sensors on our bodies or organs with high-quality wireless communication with the external world (devices/system...
متن کاملLiquid alloy printing of microfluidic stretchable electronics.
Recently, microfluidic stretchable electronics has attracted great interest from academia since conductive liquids allow for larger cross-sections when stretched and hence low resistance at longer lengths. However, as a serial process it has suffered from low throughput, and a parallel processing technology is needed for more complex systems and production at low costs. In this work, we demonst...
متن کاملPrinting of stretchable silk membranes for strain measurements.
Quantifying the deformation of biological tissues under mechanical loading is crucial to understand its biomechanical response in physiological conditions and important for designing materials and treatments for biomedical applications. However, strain measurements for biological tissues subjected to large deformations and humid environments are challenging for conventional methods due to sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Science
سال: 2017
ISSN: 2198-3844
DOI: 10.1002/advs.201700251